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3  The Autocorrelation Function 

The autocorrelation function (ACF) is a fundamental way 
to describe a time series by multiplying it by a delayed 
version of itself, thereby showing the degree by which its 
value at one time is similar to its value at a certain later 
time.  More specifically, the autocorrelation at lag k is 
defined as 

Abstract 

This paper describes a new method for power law noise 
identification, based on the lag 1 autocorrelation function, 
that can determine the dominant noise type for all common 
noise processes, from phase or frequency data, for all 
averaging factors, in a consistent and analytic manner. 
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1  Background  
where zt is the time series, µ is its mean value, σz

2 is its 
variance, and E denotes the expected value.  The 
autocorrelation is usually estimated by the expression 

It is often necessary to identify the dominant power law 
noise process (WPM, FPM, WFM, FFM, RWFM, FWFM 
or RRFM) of the spectral density of the fractional 
frequency fluctuations, Sy(f) = hαf α (α = 2 to –4), to 
perform a frequency stability analysis.  For example, 
knowledge of the noise type is necessary to determine the 
equivalent number of chi-squared degrees of freedom (edf) 
for setting confidence intervals and error bars, and it is 
essential to know the dominant noise type to correct for 
bias in the newer Total and Thêo1 variances.  While the 
noise type may be known a priori or estimated manually, it 
is desirable to have an analytic method for power law 
noise identification that can be used automatically as part 
of a stability analysis algorithm. 
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where z  is the mean value of the time series and N is the 
number of data points [3]. 

4  The Lag 1 Autocorrelation 

2  Prior Art The lag 1 autocorrelation is simply the value of r1 as given 
by the expression above.  For frequency data, the lag 1 
autocorrelation is able to easily identify white and flicker 
PM noise, and white (uncorrelated) FM noise, for which 
the expected values are –1/2,     –1/3 and zero respectively.  
The more divergent noises have positive r1 values that 
depend on the number of samples, and tend to be larger 
(approaching 1).  For those more divergent noises, the data 
are differenced until they become stationary, and the same 
criteria as for WPM, FPM and WFM are then used, 
corrected for the differencing.  The results can be rounded 
to determine the dominant noise type or used directly to 
estimate the noise mixture. 

There is little literature on the subject of power-law noise 
identification.  The most common method for power law 
noise identification is simply to observe the slope of a log-
log plot of the Allan or modified Allan deviation versus 
averaging time, either manually or by fitting a line to it.  
This obviously requires at least two stability points.  
During a stability calculation, it is desirable (or necessary) 
to automatically identify the power law noise type at each 
point, particularly if bias corrections and/or error bars must 
be applied.  Previous methods for power law noise 
identification [1], based on the Barnes B1 and R(n) bias 
ratios [2], have been ad hoc, have not used a consistent 
methodology for all noise types, and have not handled all 
cases (e.g. resolving white and flicker PM at unity 
averaging factor). 

5  Noise Identification Using r1  
An effective method for identifying power law noises 
using the lag 1 autocorrelation is based on the properties of 
discrete-time fractionally integrated noises having spectral 
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densities of the form (2 sin π f )-2δ.  For δ < ½, the process 
is stationary and has a lag 1 autocorrelation equal to ρ1 = δ 
/ (1-δ)  [4], and the noise type can therefore be estimated 
from δ = r1 / (1+r1).  For frequency data, white PM noise 
has ρ1 = -1/2, flicker PM noise has ρ1 = -1/3, and white FM 
noise has ρ1 = 0.  For the more divergent noises, first 
differences of the data are taken until a stationary process 
is obtained as determined by the criterion δ < 0.25.  The 
noise identification method therefore uses p = -round (2δ) 
–2d, where round (2δ) is 2δ rounded to the nearest integer 
and d is the number of times that the data is differenced to 
bring δ down to < 0.25.  If z is a τ-average of frequency 
data y(t), then α = p; if z is a τ-sample of phase data x(t), 
then α = p + 2, where α is the usual power law exponent    
f α, thereby determining the noise type at that averaging 
time.  The properties of this power law noise identification 
method are summarized in Table 2.  It has excellent 
discrimination for all common power law noises for both 
phase and frequency data, including difficult cases with 
mixed noises.   

The input data should be for the particular averaging time, 
τ, of interest, and it may therefore be necessary to 
decimate the phase data or average the frequency by the 
appropriate averaging factor before applying the noise 
identification algorithm.  The dmax parameter should be 
set to 2 or 3 for an Allan or Hadamard (2 or 3-sample) 
variance analysis respectively.  The alpha result is equal to 
p+2 or p for phase or frequency data respectively, and may 
be rounded to an integer (although the fractional part is 
useful for estimated mixed noises).  The algorithm is fast, 
requiring only the calculation of one autocorrelation value 
and 1st differences for several times.  It is independent of 
any particular variance. 

7  Results 

The lag 1 autocorrelation method yields good results, 
consistently identifying pure power noise for α = 2 to –4 
for sample sizes of about 30 or more, and generally 
identifying the dominant type of mixed noises when it is at 
least 10% larger than the others.  For a mixture of adjacent 
noises, the fractional result provides an indication of their 
ratio.  For those reasons, and because it can handle all 
averaging factors, the new lag 1 autocorrelation method 
has replaced the B1/R(n) bias ratio method in Version 
1.42a and higher of the Stable32 program [5]. 

6  Noise ID Algorithm 

The basic lag 1 autocorrelation power law noise 
identification algorithm is quite simple.  The inputs are a 
vector z1,…, zN  of phase or frequency data, the minimum 
order of differencing dmin (default = 0), and the maximum 
order of differencing dmax.  The output is p, an estimate of 
the α of the dominant power law noise type, and 
(optionally) the value of d. 

8  Examples 

Examples of the lag 1 autocorrelation method for power 
law noise identification are shown in Figures 1 and 2 for 
100 sets of 1024 points of pure and mixed simulated noise, 
as generated by the Kasdin-Walter method [6], with 
approximately equal Allan variances (τ=1) summed for the 
mixed noises.  Figure 4 shows a composite plot of 
overlapping Allan deviation and lag 1 ACF noise type for 
a pair of SAO VLG11B hydrogen masers.  The noise type 
varies from white/flicker PM at short averaging times to 
more divergent random walk/flicker walk FM at longer 
averaging times.  Figure 5 shows a composite plot of 
overlapping Allan deviation and Lag 1 ACF noise type for 
a Symmetricom Cs-III high performance laboratory 
cesium frequency standard vs. a Symmetricom MHM 2010 
hydrogen maser.  As is typical for such devices, it displays 
white FM noise out to an averaging time of several days 
before reaching a “flicker floor”. Figure 6 shows a 
composite plot of overlapping Allan deviation and Lag 1 
ACF noise type for a Symmetricom Model 8130 
militarized rubidium frequency standard, again vs. a 
Symmetricom MHM 2010 hydrogen maser.  It displays 
white FM noise before reaching a region of flicker and 
random walk FM noise at an averaging time of about 104 
seconds. 

 
Done = False, d = 0 
While Not Done 
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If d >= dmin And (δ < 0.25 Or d >= dmax) 
 p d= − +2( )δ  
 Done = True 
Else 
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9  Limitations 
End If 

Before analysis, the data should be preprocessed to remove 
outliers, discontinuities, and deterministic components.  
Simulations using 100 sets of white FM noise of various 

End While 
Note: May round p to nearest integer 
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10  Conclusion sample sizes have shown that acceptable results can be 
obtained from the lag 1 autocorrelation noise identification 
method for N ≥ 32, where N is the number of data points, 
as shown in the Table 1.  The table shows the percentage 
of estimates that differ from the expected α value of 0 by 
more than a half-integer noise type.  This percentage 
includes whatever error is due to the simulated noise data 
itself. 

This paper has described a method for power law noise 
identification based on the lag 1 autocorrelation function.  
It is a fast and effective way to support the setting of 
confidence intervals and to apply bias corrections during a 
frequency stability analysis. 
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Lag 1 Autocorrelation, r1
† 

d=0 d=1 d=2 
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d=0 ACF of 
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* The differencing operation changes the appearance of the phase data to that shown 2 rows higher. 
† Shaded values are those used for noise ID for the particular noise and data type 

 
Table 2:  Lag 1 Autocorrelation for Various Power Law Noises and Differences 
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W PM, α = +2 
Max = +2.147 
Avg = +1.9998 
Min = +1.844 

F PM, α = +1 
Max = +1.449 
Avg = +0.9957 
Min = +0.745 

W FM, α = 0 
Max = +0.204 
Avg = -0.0004 
Min = -0.129 

F FM, α = -1 
Max = -0.694 
Avg = -1.0045 
Min = -1.295 

RW FM, α = -2 
Ma x= -1.860 
Avg = -1.9960 
Min = -2.138 -3
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Figure 1:  Examples of Lag 1 Autocorrelation Noise ID for Pure Integer Simulated Power Law Noises 

  
 

W PM & F PM, α = +1.5 
Max = +1.714 
Avg = +1.3431 (1.359) 
Min = +1.071 

F PM & W FM, α = +0.5 
Max = +0.549 
Avg = +0.3802 (0.373) 
Min = +0.157 

W FM & F FM, α = -0.5 
Max = -0.308 
Avg = -0.6534 (-0.656) 
Min = -1.021 

F FM & RW FM, α = -1.5 
Max = -1.373 
Avg = -1.6041 (-1.610) 
Min = -1.828 -2
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Note: Theoretical values shown 
in ( ) 

 
Figure 2:  Examples of Lag 1 Autocorrelation Noise ID for 50% Mixture of Adjacent Integer Power Law Noises  
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Figure 3: Noise Analysis of the Rubidium Frequency Standard of Figure 6 for dmin = 0, 1 and 2
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Figure 4:  Frequency Stability and Noise Analysis of Two Hydrogen Masers 
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Figure 5:  Frequency Stability and Noise Analysis of a Cesium Frequency Standard 
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Figure 6:  Frequency Stability and Noise Analysis of a Rubidium Frequency Standard 
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